Brain(s) to brain(s)

Image available here

Computer mediated brain to brain interaction (mice)

A brain-to-brain interface records the signals in one person’s brain, and then sends these signals through a computer in order to transmit them into the brain of another person. This process allows the second person to “read” the mind of the first or, in other words, have their brain fire in a similar pattern to the original person

In 2013 scientists tested the method to mice; they surgically implanted recording wires that measured brain activity in the motor areas of the brain

Brain to brain interaction using an electroencephalography cap and transcranial magnetic stimulation (humans)

the human device was non-invasive, meaning surgery wasn’t required. This device transferred the movement signals from the encoder straight to the motor area of the brain of the decoder, without using a computer (…) Then the scientists used transcranial magnetic stimulation (TMS) on the decoding person’s brain, sending little magnetic pulses through their skull to activate a specific region of their brain. This caused the second person to take the action that the first person meant to (…) The decoder wasn’t consciously aware of the signal they received (…) however, only movement was transferred, not thoughts

Brain to brain interaction using an electroencephalography cap and transcranial magnetic stimulation & led lights (humans)

Same researchers designed a game with pairs of participants, similar to 20 Questions. In the game, the encoder was given an object that the decoder wasn’t familiar with. The goal was for the decoder to successfully guess the object through a series of yes or no questions. But unlike in 20 Questions, the encoder responded by looking LED flashing lights, one signifying yes and the other no. The visual response generated in the encoder’s brain was transmitted to the visual areas of the brain of the decoder (…) The decoders were successfully able to guess the object in 72 percent of the games, compared to an 18 percent success rate without the BBI (…) this was the largest BBI study, and also the first to include female participants.

Multi-person brain-to-brain interfaces/ collective intelligence

To do this, researchers drew on their past work with brain-to-brain interfaces. The Senders wore electroencephalography (EEG) caps, which allowed the researchers to measure brain activity via electrical signals, and watched a Tetris-like game with a falling shape that needed to be rotated to fit into a row at the bottom of the screen. In another room, the Receiver sat with a transcranial magnetic stimulation (TMS) apparatus positioned near the visual cortex. The Receiver could only see the falling shape, not the gap that it needed to fill, so their decision to rotate the block was not based on the gap that needed to be filled. If a Sender thought the Receiver should rotate the shape, they would look at a light flashing at 17 hertz (Hz) for Yes. Otherwise, they would look at a light flashing 15Hz for No. Based on the frequency that was more apparent in the Senders’ EEG data, the Receiver’s TMS apparatus would stimulate their visual cortex above or below a threshold, signaling the Receiver to make the choice of whether to rotate. With this experiment, the Receiver was correct 81 percent of the time.

There’s a mind-boggling number of possible applications—just imagine projecting ideas in an educational environment, directly sharing memories with others, replacing the need for phones or the Internet altogether, or even, in the more near-term, using it to teach people new motor skills during rehabilitation.

References

Leave a comment